Vyučující
|
-
Knobloch Roman, RNDr. Ph.D.
-
Bittner Václav, Mgr. Ph.D.
|
Obsah předmětu
|
Přednášky: A) Úvod do diferenciálního a integrálního počtu funkce jedné reálné proměnné 1) Číselné množiny; zobrazení 2) Funkce jedné reálné proměnné; základní vlastnosti funkcí a operace s funkcemi 3) Elementární funkce 4) Posloupnosti (základní pojmy, limita posloupnosti) 5) Limita a spojitost funkce; výpočet limit funkce; vlastnosti spojitých funkcí 6) Derivace funkce I (geometrický význam, rovnice tečny, výpočet derivací) 7) Derivace funkce II (derivace složené funkce, diferenciál funkce, l´Hospitalovo pravidlo) 8) Souvislost mezi derivací funkce a jejím průběhem; vyšetřování průběhu funkce 9) Primitivní funkce a neurčitý integrál (základní pravidla, metoda per partes, substituční metoda) 10) Riemannův integrál a jeho výpočet 11) Aplikace určitého integrálu; Nevlastní integrál B) Úvod do lineární algebry 12) Aritmetický n-rozměrný vektorový prostor (lineární závislost vektorů, báze a dimenze vektorového prostoru); Matice (operace s maticemi, hodnost a determinant matice) 13) Soustavy lineárních algebraických rovnic; Inverzní matice 14) Vlastní čísla a vlastní vektory matice Cvičení: Jsou procvičovány poznatky z přednášky. Jsou zahrnuty ukázky aplikací poznatků v oborech Biomedicínská technika a Radiologie. Jsou využívány dostupné sw aplikace.
|
Studijní aktivity a metody výuky
|
Monologický výklad (přednáška, prezentace, vysvětlování)
- Účast na výuce
- 56 hodin za semestr
- Semestrální práce
- 15 hodin za semestr
- Příprava na zápočet
- 30 hodin za semestr
- Domácí příprava na výuku
- 60 hodin za semestr
- Příprava na zkoušku
- 50 hodin za semestr
|
Výstupy z učení
|
Předmět je úvodem do diferenciálního a integrálního počtu funkce jedné reálné proměnné a do lineární algebry.
Student zvládne diferenciální a integrální počet funkce jedné reálné proměnné a úvod do lineární algebry. Teorii umí využít při řešení praktických úloh (extrémy funkcí, vlastnosti spojitých funkcí na intervalu, aplikace určitého integrálu, soustavy lineárních rovnic, maticový počet).
|
Předpoklady
|
Znalost SŠ matematiky
|
Hodnoticí metody a kritéria
|
Kombinovaná zkouška
Zápočet: udělen za úspěšné absolvování dvou hromadných zápočtových testů a za aktivní účast na cvičeních. Zkouška: kombinovaná, skládá se z písemné části početní a teoretické. Výsledky hromadných zápočtových testů budou vzaty v úvahu při klasifikaci u zkoušky.
|
Doporučená literatura
|
-
Bittnerová, D. - Plačková, G.:. Louskáček 1 - Diferenciální počet funkcí jedné reálné proměnné (Sbírka úloh). Liberec, TUL 2006, 2007..
-
Bittnerová, D. - Plačková, G.:. Louskáček 2 - Integrální počet funkcí jedné reálné proměnné..
-
Kaňka, M. - Henzler J.:. Matematika 2, Ekopress.. Praha, 2003. ISBN 80-86119-77-7.
-
Klůfa, J. - Coufal, J.:. Matematika 1, Ekopress.. Praha, 2003. ISBN 80-86119-76-9.
-
Vild, J. - Říhová, H.:. Diferenciální kalkul F1.. Liberec, 2002. ISBN 80-7083-552-4.
-
Vild, J. - Říhová, H.:. Integrální kalkul F1.. Liberec, 2005. ISBN 80-7083-587-7.
|